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Abstract—The Electroencephalography (EEG) based brain-
computer interfaces is a convenient way to use brain waves to
investigate different emotions and some mental disorders. With
the development of research and design, it is even possible to use
brain waves to control devices (such as robot arms) to improve
the life of the disabled. On this basis, based on the summary of
previous research results, this paper focuses on the analog front-
end of wearable brain computer interface (especially electrode
and amplifier) and its related algorithms. The algorithms are
developed on the basis of some classical machine learning
algorithms, which are more suitable for EEG signals like
common spatial paternal and long short-term memory network.
This article may provide some convenience and inspiration for
future development of EEG-based brain-machine interfaces.
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I. INTRODUCTION
Electroencephalography (EEG) is a traditional non-

invasive method for detecting brain wave signals, which can
be obtained indirectly through the scalp rather than through
surgery. The whole EEG signal detection device consists of
electrodes, analog front end (AFE), main processor, data
transmission and data storage. They can be used in many
fields, especially medicine, and even engineering. In order to
collect and apply EEG more conveniently and quickly, the
device needs to be lightweight and flexible. So this paper
focuses on the application of EEG in wearable brain-computer
interfaces (BCI).

The rest part of the paper is organized as follow. The
section 2 is about the design and use of EEG acquisition: (1)
dry electrode characteristics and general materials, (2) some
recent theoretical designs of AFE circuits, and (3) the proper
placement of dry electrodes on the scalp for wearable devices.
Because of their convenience, dry electrodes are almost the
most suitable components for usage on wearable devices.
After the EEG signal enters the circuit through the electrode, it
first needs to be amplified and filtered by AFE, not only to
retain the required bandwidth, but also to minimize the impact
of impedance caused by various factors, e.g., the dry electrode
and skin, on the waveform. The amplification part should be
able to avoid the signal coupling with the environment
electromagnetic interference (EMI), and to suppress the
interference of mains and high input impedance as much as
possible. These two capabilities are also known as common
mode rejection ratio (CMRR) and power supply rejection ratio
(PSRR) [1]. The section 3 discusses the algorithms used to

analyze and utilize the data from EEG, which mainly focus on
Deep Neural Network (DNN), Long Short Term Memory
networks (LSTM) and Support Vector Machine (SVM). Due
to the principles and characteristics of different algorithms,
they can be used in different scenarios. Eventually, a brief
summary is given in Sec. 4.

II. THE DESIGN OF EEG ACQUISITION

EEG signals collected from the scalp via electrode
devices are usually only a few microvolts, typically in a
frequency band of 0.5-50Hz. The signals are generated by
synchronous neuronal firing activity in the brain [2].
Traditional methods of recording and analyzing often require
going to specific locations, spending a lot of time preparing
and then getting results. Recording EEG with a BCI, however,
can be done anytime, anywhere. Such devices are constantly
iterating and evolving as electronics engineers exploit the
knowledge of neuroscience. No matter how it develops, a BCI
will always consist of an amplifier, filter, ADC, and processor.

A. Dry electrode
Traditional EEG electrode setup uses a medium like a

conductive gel to keep the electrode in good contact with the
skin, known as the wet electrode. Because of the gel, it takes
more time to deploy a wet electrode and it can't be used for
long periods of time. As a non-invasive wearable brain
computer interface, dry electrodes are generally used to
simplify the time and cost of deployment and use. A variety of
dry electrode materials are commonly used, such as
conductive rubber or gold-plated metal pins [3]. However, due
to the loss of conductive gel, the gap between the dry electrode
and the skin will produce greater impedance, thus affecting the
final effect.

The equivalent model using dry electrodes is shown in
Fig. 1. Zs is the skin impedance, which is composed of the
epidermis and dermis. The impedance range of this skin layer
is approximately 10kΩ to 1MΩ per square centimeter at 1Hz
[4]. Resistance between the skin and the dry electrode from
obstacles such as sweat or hair is the dry electrode's biggest
challenge, which is shown by Zse. The third impedance called
Ze, is related to many parameters such as the material, the
amount of impurities, the substance added, and the shape and
size of the electrode [4]. Besides, the last type of impedance is
related to the input impedance of the amplifier and is
expressed in terms of the amplifier Zin.



Fig. 1. The theoretical impedance of collecting EEG signals using a dry electrode
[4].

The electrodes for the wearable brain-computer interface
are usually circular metal plates that can be attached to the
scalp. However, according to the usage scenario and needs,
some have developed electrodes that can be used as earplugs,
which is usually much smaller than common electrodes [5, 6].

The embedded electrodes used for the headphone-form
brain-computer interface is made by a titanium (Ti) matrix
which covered with iridium oxide (IrO2) [7]. IrO2 is a suitable
material with low impedance and pseudo capacitance
properties [7]. Past use of IrO2 in biological potential
detection suggests that it is suitable as a dry electrode material.

B. Analog Front-end circuit Design
After the EEG signal is collected by the electrode, it

needs to be processed by an analog front-end (AFE) circuit.
The amplifier part of the AFE is mainly discussed here.

The amplifier circuit is the key point of EEG acquisition.
Since the human EEG signal is very weak, and there are noise
and signal source impedance. The amplifier needs to have high
input impedance, high common mode rejection ratio (CMRR),
low noise, low drift, appropriate bandwidth and other
performance.

Sullivan et al. used TL6010 to construct the AFE circuit
with a noise level of 0.28 μVrms and a power consumption of
423 μW [6]. Recently Tao Tang group used a kind of neoteric
AFE construction which combine Time Division Multiplexing
(TDM) together with chopping stabilization [3], which

measured the part of amplifier intrinsic CMRR are 89 dB and
system-level AFE CMRR are 82 dB, while the power per
channel is only 1.5μW under 1 V supply.

Contemporarily, relatively mature designs have replaced
Multi-Chip-Module (MCM) with more integrated System on a
Chip (Soc) little by little. The Soc contains AFE and MCU,
i.e., the Soc is programmable and more flexible for specific
jobs. The basic composition of the Soc is determined by the
CMOS process. The more sophisticated the process, the lower
the power consumption and the faster the response. At present,
180nm process Soc is mostly used, while 65nm or even 55nm
Soc is also used. The internal section topology of a 4-channel
AFE from Soc is illustrated in Fig. 2. Nevertheless, due to the
complexity and high cost of making specialized Soc, they
generally remain in the design. Table Ⅰ listed some AFE
designs of various wearable devices in recent years.

Fig. 2. Block diagram of the 4-channel TDM/chopping EEG AFE [8].

TABLE I
COMPARISON OF SYSTEM ARCHITECTURES OF SOME RECENT DESIGNS OF AFE

Parameters [3] [8] [9] [10] [11] [12] [13]
Technology(nm) 180 180 180 180 180 350 180

Type Soc Soc ASIC ASIC ASIC ASIC -
Channel 16 4 1 - 8 - -
Supply(V) 1 1 1 1.2 - 1.25 1.8

Channel Power
(μW)

24 5 1.6 43 - 0.95 108/per

Input referred
noise(μVrms)

0.63 0.62 0.61 1.2 1.75 1.5 0.67

Input
Impedance(MΩ)

@50Hz

560 650 - 720 300 - 6700

AFE CMRR(dB) 89/82 86 85 100 84 - 86
Application Wearable Wearable Wearable Wearable Wearable Wearable Wearable

Ear



C. Placement method
The first step in using a wearable device is to find the

right spots on the scalp to pick up the signal. Before the
electrodes are placed, the head of the measured person will be
marked in standard positions stipulated by the international
10/20, 10/10 and 10/5 systems in order to collect the desired
signal or minimize the factors affecting the effect [14]. Some
multi-channel placement methods are exhibited in Fig. 3,
where A to D represent signal recording from Oz only, 4-
channels, 8-channels and 32-channels respectively. F stands
for the frontal lobe, T for the temporal lobe, C for the central
lobe, P for the parietal lobe, O for the occipital lobe, and Z for
the electrodes placed on the midline.

Fig. 3. Electrode placement according to the 10/20 International Positioning
System [15].

The 10/20 system was developed with improved
resolution for locating signals in the head cortex. In the 10/20
system, additional electrodes are added in the middle position
between those electrodes that are 20% of the total distance
between the front and rear. To account for these new loci, new
points are introduced, such as AF representing the point
between Fp and F, and FC representing the point between F
and C. Apart from that, signs T3/T4 and T5/T6 were renamed
to T7/T8 and P7/P8 [14]. ACNS has accepted this modified
combinatorial nomenclature (MCN) system as a standard [14].

Different locations can be selected for collection
according to different purposes. To study emotional signals,
for example, you can install electrodes in the Fp1, F3, F4 and
so on in the prefrontal lobe [16]. Fp1, Fpz, Fp2 and ear
electrodes were used as reference electrodes to reduce the
impact of statistical noise [16].

III. THE ALGORITHMS USED TO ANALYZE THE DATA
FROM EEG

A. Common machine learning
With the development of machine learning and deep

learning, relatively mature data recognition and classification
algorithms have been developed, which can use to improve the
efficiency of EEG signal processing.
1) Deep Neural Network (DNN):

Like the human brain, neural networks are made up of
perceptron. DNN can be thought of as a neural network with
multiple hidden layers, multiple layers.

DNN is also called a multilayer perceptron (MLP). The
internal structure of DNN is mainly composed of three
different layers, each of which is composed of a large number
of perceptron units. The initial data enters the network from
the first input layer, then goes through the hidden layer to
process the data into the form you want or more easily to
process and classify, and finally visualizes the results through
the output layer. For example, you can take an image as input,
extract the important features of the image through the
computation of the middle hidden layer, and finally the output
layer compares and prints the judgment results according to
the pre-sorted classes.

In general, complex classification requires the
introduction of activation functions in the hidden and output
layers. If there is no activation function, no matter how many
layers there are in the neural network, the output of each layer
will only be the linear value of the initial input value, which is
the original perceptron. If the activation function is used, it is
equivalent to introducing a non-linear factor into a neural
network, so that the network can theoretically approximate any
non-linear function, so that the neural network can be used as
many non-linear models.
2) Long Short Term Memory networks (LSTM):
LSTM is a temporal recursive neural network (RNN)

designed to solve the long term dependence issue of classic
RNN.

In all RNN, there is a recursive neural network module in
the form of a chain. This repetitive structure module has a very
simple structure, such as TANH layer. LSTM has two transfer
states, one ct (cell state) and one ht (hidden state), whereas
RNN has only one transfer state ht. Where the passed ct
changes slowly, the output ct is usually the previous state
passed ct-1 plus some values.
3) Supervised learning Support Vector Machine (SVM):
SVM is a binary classification model in essence. The

basic model of SVM is a linear classifier defined in the feature
space with the largest interval, which distinguishes it from
perceptron.

SVM also includes kernel techniques, which makes it
essentially a nonlinear classifier and an optimization algorithm
for solving convex quadratic programming.

The primary idea of SVM is to figure out the separation
hyper-plane that can correctly segment training data set with
the maximal geometric interval.
B. Improvements on EEG data
1) Common spatial paternal (CSP) based DNN:
For the collected EEG signals, spatial filter is very

suitable for processing such multi-dimensional signals and
data. It can utilize the spatial correlation of EEG signals,
eliminate the noise of signals, and realize the localization of
local cortical neural activities. Spatial filtering can obtain
better processing effect by effectively combining time domain
and frequency domain features.



The traditional CSP method uses a single fixed filter bank
based on the CSP variance feature and obtains good results.
CSP has been widely used in EEG classification. A framework
for improving a common spatio-spectral pattern (CSSP)
performance is proposed [17]. In CSSP, the FINITE impulse
response filter (FIR) coefficients are obtained by applying
CSP to the signal and its delay signal. In the CSSP framework,
different spectra are calculated for each channel [17].

In the process of motor imagination, the cerebral cortex
will produce two kinds of rhythm signals with obvious
changes, respectively 8-15Hz μ rhythm signal and 18-24Hz β
rhythm. During motor imagination, the neurons are activated.
This phenomenon is called Event Related Desynchronization
(ERD)/ Event Related Desynchronization (ERS). Based on
this relationship, a variety of control instructions can be
generated by the human brain actively controlling the
amplitude of μ and β rhythms in the left and right brain [16].
CSP is more suitable for motor imagery BCI. So far, the most
common areas of motor imagination are left and right, right
hand, feet, and tongue.

Kumar et al. used CSP on BCI [17] and pointed out that
this framework is better than all other competing methods in
reducing the maximum error. The framework can be used to
develop BCI systems that use wearables because it is
computationally cheaper and more reliable than the best
competing methods [17].

He et al. made a relatively complete BCI-based robotic
arm control system based on CSP, including electrodes,
shielded wires, pre-processing chips, wireless communication,
central control system, arm machinery, PC software and
mobile APP [18].
2) Long Short Term Memory networks (LSTM):
Hasib et al. used a hierarchical long short-term memory

(H-LSTM) model with attention [19]], and the results show
that the H-LSTM model is 12.4% higher than the LSTM
model and 17.4% higher than the shallow support vector
machine model [19]].

Apart from that, the team of Xiaobing Du used a model
called Attention-based LSTM with Domain Discriminator
(ATDD-LSTM) [20]. They conducted theme-dependent and
theme-independent cross-validation experiments on SEED,
DEAP and CMEED databases, and the experimental results
showed that the proposed ATDD-LSTM model reached the
latest level in emotion recognition [20].

In addition, LSTM is more suitable for emotion
recognition and diagnosis of some neurological diseases such
as Parkinson's disease [19,21].
3) Supervised learning SVM:
The binary linear support vector machine classifier can be

used to detect patients with depression [22]. There were
significant differences between the patients with depression
and the normal control group in θ bands and α bands [22].

The result from [22] shows that patients with depression
and healthy subjects can be distinguished by changes in
functional connectivity of different frequency bands. Moreover,
SVM classifier has the best classification effect on the whole
EEG frequency band, without any fitting phenomenon.

IV. CONCLUSION
This paper mainly reviews the simulation front end of

wearable brain-computer interfaces and some algorithms by
summarizing previous studies in recent years. According to the
sequence from sampling to application, this paper first analyzes
the principle, some characteristics and standard placement
methods of common dry electrodes. Then it introduces most of
the pre-amplifier, and lists some new AFE designs through
research in recent years. Last but not least, some algorithms
suitable for EEG analysis has been reviewed, such as CSP
motion algorithm suitable for mechanical control, LSTM
algorithm suitable for emotion recognition, SVM suitable for
judging depression and other diseases. Of course, many
contents are still more theoretical and basic design, which is
mainly limited by hardware development. Any excellent design
is difficult to be applied and tested due to the problem of
manufacturing cost. In the future, more mature filtering
technology should be able to gradually solve this problem. It is
a good direction for the development of human-computer
interaction and biological research. And it's true that there's an
increasing number of ideas and technologies that can be
applied by extending the EEG brain-machine interface.
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